Polyandry and the decrease of a selfish genetic element in a wild house mouse population

  • Manser A
  • Lindholm A
  • König B
 et al. 
  • 58

    Readers

    Mendeley users who have this article in their library.
  • 39

    Citations

    Citations of this article.

Abstract

Despite deleterious effects on individuals, the t haplotype is a selfish genetic element present in many house mouse populations. By distorting the transmission ratio, +/t males transmit the t haplotype to up to 90% of their offspring. However, t/t individuals perish in utero. Theoretical models based on these properties predict a much higher t frequency than observed, leading to the t paradox. Here, we use empirical field data and theoretical approaches to investigate whether polyandry is a female counterstrategy against the negative fitness consequences of such distorters. We found a significant decrease of the t frequency over a period of 5.5 years that cannot be explained by the effect of transmission ratio distortion and recessive lethals, despite significantly higher life expectancy of +/t females compared to +/+ females. We quantified life-history data and homozygous and heterozygous fitness effects. Population subdivision and inbreeding were excluded as evolutionary forces influencing the t system. The possible influence of polyandry on the t system was then investigated by applying a stochastic model to this situation. Simulations show that polyandry can explain the observed t dynamics, making it a biologically plausible explanation for low t frequencies in natural populations in general.

Author-supplied keywords

  • Generation time
  • Intragenomic conflict
  • Overdominance
  • t frequency paradox
  • t haplotype

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free