Pose Robust Face Tracking by Combining Active Appearance Models and Cylinder Head Models

  • Daijun Kim
  • Jaewon Sung
  • Takeo Kanade
  • 1

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

The active appearance models (AAMs) provide the detailed descriptive parameters that are useful for various autonomous face analysis problems. However, they are not suitable for robust face tracking across large pose variation for the following reasons. First, they are suitable for tracking the local movements of facial features within a limited pose variation. Second, they use gradient-based optimization techniques for model fitting and the fitting performance is thus very sensitive to initial model parameters. Third, when their fitting is failed, it is difficult to obtain appropriate model parameters to re-initialize them. To alleviate these problems, we propose to combine the active appearance models and the cylinder head models (CHMs), where the global head motion parameters obtained from the CHMs are used as the cues of the AAM parameters for a good fitting or re-initialization. The good AAM parameters for robust face tracking are computed in the following manner. First, we estimate the global motion parameters by the CHM fitting algorithm. Second, we project the previously fitted 2D shape points onto the 3D cylinder surface inversely. Third, we transform the inversely projected shape points by the estimated global motion parameters. Fourth, we project the transformed 3D points onto the input image and computed the AAM parameters from them. Finally, we treat the computed AAM parameters as the initial parameters for the fitting. Experimental results showed that face tracking combining AAMs and CHMs is more pose robust than that of AAMs in terms of 170% higher tracking rate and the 115% wider pose coverage.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Daijun Kim

  • Jaewon Sung

  • Takeo Kanade

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free