Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups Induction of phase 2 enzymes and elevations of glutathione are major and sufficient strategies for protecting mammals and their cells against the toxic and carcinogenic effects of electrophiles and reactive forms of oxygen

  • Dinkova-Kostova A
  • Massiah M
  • Bozak R
 et al. 
  • 1


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


Inducers belong to nine chemical classes and have few common properties except for their ability to modify sulfhydryl groups by oxidation, reduction, or alkylation. Much evidence suggests that the cellular ''sensor'' molecule that recognizes the inducers and signals the enhanced transcription of phase 2 genes does so by virtue of unique and highly reactive sulfhydryl functions that recognize and covalently react with the inducers. Benzylidene-alkanones and-cycloalkanones are Michael reaction acceptors whose inducer potency is profoundly increased by the presence of ortho-(but not other) hydroxyl substituent(s) on the aromatic ring(s). This enhancement correlates with more rapid reactivity of the ortho-hydroxylated derivatives with model sulfhydryl compounds. Proton NMR spectros-copy provides no evidence for increased electrophilicity of the-vinyl carbons (the presumed site of nucleophilic attack) on the hydroxy-lated inducers. Surprisingly, these ortho-hydroxyl groups display a propensity for extensive intermolecular hydrogen bond formation, which may raise the reactivity and facilitate addition of mercaptans, thereby raising inducer potencies.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

There are no full text links


  • Albena T Dinkova-Kostova

  • Michael A Massiah

  • Richard E Bozak

  • Ronald J Hicks

  • Paul Talalay

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free