Prediction of quality parameters of biomass pellets from proximate and ultimate analysis

  • Gillespie G
  • Everard C
  • Fagan C
 et al. 
  • 77


    Mendeley users who have this article in their library.
  • 24


    Citations of this article.


The real-time prediction of crucial biomass pellet quality parameters such as higher heating value (HHV) and mechanical durability (MD) will allow for more efficient operation of energy production systems. Multiple linear regression (MLR) models were developed to predict HHV and MD from proximate and ultimate analysis of biomass pellets. A diverse range of biomasses from energy crops including pine, Miscanthus, reed canary grass, tall fescue and short rotation coppice willow were used to produce the pellets. HHV and MD of the pellets were predicted with coefficients of determination of 0.99 and 0.94, respectively, and standard errors of the estimate of 0.08 MJ kg-1(Range: 16.39-18.92 MJ kg-1) and 0.49% (Range: 92.6-97.5%), respectively. This study demonstrates that MLR can be used to predict additional information of HHV and MD of biomass pellets from proximate and ultimate analysis. Important quality indices for diverse biomass pellets are also reported. © 2013 Elsevier Ltd. All rights reserved.

Author-supplied keywords

  • Biomass
  • Higher heating value
  • Mechanical durability
  • Proximate analysis
  • Ultimate analysis

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free