Progress in the analysis of membrane protein structure and function

  • Werten P
  • Rémigy H
  • De Groot B
 et al. 
  • 50


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


Structural information on membrane proteins is sparse, yet they represent an important class of proteins that is encoded by about 30% of all genes. Progress has primarily been achieved with bacterial proteins, but efforts to solve the structure of eukaryotic membrane proteins are also increasing. Most of the structures currently available have been obtained by exploiting the power of X-ray crystallography. Recent results, however, have demonstrated the accuracy of electron crystallography and the imaging power of the atomic force microscope. These instruments allow membrane proteins to be studied while embedded in the bi-layer, and thus in a functional state. The low signal-to-noise ratio of cryo-electron microscopy is overcome by crystallizing membrane proteins in a two-dimensional protein-lipid membrane, allowing its atomic structure to be determined. In contrast, the high signal-to-noise ratio of atomic force microscopy allows individual protein surfaces to be imaged at sub-nanometer resolution, and their conformational states to be sampled. This review summarizes the steps in membrane protein structure determination and illuminates recent progress. © 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.

Author-supplied keywords

  • Atomic force microscopy
  • Membrane protein expression
  • Molecular dynamics simulation
  • Three-dimensional electron microscopy
  • Two-dimensional crystallization

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • P. J L Werten

  • H. W. Rémigy

  • B. L. De Groot

  • D. Fotiadis

  • a. Philippsen

  • H. Stahlberg

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free