Properties of implanted electrodes for functional electrical stimulation

  • Popovic D
  • Gordon T
  • Rafuse V
 et al. 
  • 42

    Readers

    Mendeley users who have this article in their library.
  • 40

    Citations

    Citations of this article.

Abstract

Implanted wire electrodes are increasingly being used for the functional electrical stimulation of muscles in partially paralysed patients, yet many of their basic characteristics are poorly understood. In this study we investigated the selectivity, recruitment characteristics and range of control of several types of electrode in triceps surae and plantaris muscles of anaesthetized cats. We found that nerve cuffs are more efficient and selective (i.e., cause less stimulus spread to surrounding muscles) than intramuscular electrodes. Bipolar intramuscular stimulation was more efficient and selective than monopolar stimulation, but only if the nerve entry point was between the electrodes. Monopolar electrodes are efficient and selective if located close to the nerve entry point, but their performance declines with distance from it. Nonetheless, for a variety of reasons monopolar stimulation provides the best compromise in many current applications. Short duration pulses offer the best efficiency (least charge per pulse to elicit force) but high peak currents, increasing the risk of electrode corrosion and tissue damage. Electrode size has little effect on recruitment and should therefore be maximised because this minimises current density.

Author-supplied keywords

  • Electrical stimulation electrodes

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free