Quantitative EEG analysis using error reduction ratio-causality test; validation on simulated and real EEG data

17Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Objective: To introduce a new method of quantitative EEG analysis in the time domain, the error reduction ratio (ERR)-causality test. To compare performance against cross-correlation and coherence with phase measures. Methods: A simulation example was used as a gold standard to assess the performance of ERR-causality, against cross-correlation and coherence. The methods were then applied to real EEG data. Results: Analysis of both simulated and real EEG data demonstrates that ERR-causality successfully detects dynamically evolving changes between two signals, with very high time resolution, dependent on the sampling rate of the data. Our method can properly detect both linear and non-linear effects, encountered during analysis of focal and generalised seizures. Conclusions: We introduce a new quantitative EEG method of analysis. It detects real time levels of synchronisation in the linear and non-linear domains. It computes directionality of information flow with corresponding time lags. Significance: This novel dynamic real time EEG signal analysis unveils hidden neural network interactions with a very high time resolution. These interactions cannot be adequately resolved by the traditional methods of coherence and cross-correlation, which provide limited results in the presence of non-linear effects and lack fidelity for changes appearing over small periods of time. © 2013 International Federation of Clinical Neurophysiology.

Cite

CITATION STYLE

APA

Sarrigiannis, P. G., Zhao, Y., Wei, H. L., Billings, S. A., Fotheringham, J., & Hadjivassiliou, M. (2014). Quantitative EEG analysis using error reduction ratio-causality test; validation on simulated and real EEG data. Clinical Neurophysiology, 125(1), 32–46. https://doi.org/10.1016/j.clinph.2013.06.012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free