Quantitatively modeling the equilibrium properties of thiol-decorated gold nanoparticles

  • Tambasco M
  • Kumar S
  • Szleifer I
  • 23

    Readers

    Mendeley users who have this article in their library.
  • 13

    Citations

    Citations of this article.

Abstract

We employ a molecular mean-field theory to quantitatively understand the sizes, surfactant surface coverage, and size fluctuations of gold nanocrystals decorated with thiol surfactants of different chain lengths. Our model assumes that surfactant-coated nanoparticles are equilibrium structures. We find that packing constraints experienced by the surfactant tails are less significant for more curved (smaller) particles. This effect enables us to rationalize the experimental observations/deductions that the thiol coverage per unit area increases with decreasing particle size. The reduction of surface coverage with increasing size also explains the fact that size polydispersity increases with increasing nanoparticle size. We find that increasing the length of the surfactants results in larger nanoparticles.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Michael Tambasco

  • Sanat K. Kumar

  • Igal Szleifer

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free