Quantum spin Hall effect in two-dimensional transition metal dichalcogenides

  • Qian X
  • Liu J
  • Fu L
 et al. 
  • 53


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


Quantum spin Hall (QSH) effect materials feature edge states that are topologically protected from backscattering. However, the small band gap in materials that have been identified as QSH insulators limits applications. We use first-principles calculations to predict a class of large-gap QSH insulators in two-dimensional transition metal dichalcogenides with 1T′ structure, namely, 1T′-MX2 with M = (tungsten or molybdenum) and X = (tellurium, selenium, or sulfur). A structural distortion causes an intrinsic band inversion between chalcogenide-p and metal-d bands. Additionally, spin-orbit coupling opens a gap that is tunable by vertical electric field and strain. We propose a topological field effect transistor made of van der Waals heterostructures of 1T′-MX2 and two-dimensional dielectric layers that can be rapidly switched off by electric field through a topological phase transition instead of carrier depletion.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Xiaofeng Qian

  • Junwei Liu

  • Liang Fu

  • Ju Li1

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free