Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities

173Citations
Citations of this article
177Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

H2 is probably the most important substrate for terrestrial subsurface lithoautotrophic microbial communities. Abiotic H2 generation is an essential component of subsurface ecosystems truly independent of surface photosynthesis. Here we report that H2 concentrations in fracture water collected from deep siliclastic and volcanic rock units in the Witwatersrand Basin, South Africa, ranged up to two molar, a value far greater than observed in shallow aquifers or marine sediments. The high H2 concentrations are consistent with that predicted by radiolytic dissociation of H2O during radioactive decay of U, Th, and K in the host rock and the observed He concentrations. None of the other known H2-generating mechanisms can account for such high H2 abundance either because of the positive free energy imposed by the high H2 concentration or pH or because of the absence of required mineral phases. The radiolytic H 2 is consumed by methanogens and abiotic hydrocarbon synthesis. Our calculations indicate that radiolytic H2 production is a ubiquitous and virtually limitless source of energy for deep crustal chemolithoautotrophic ecosystems. Copyright 2005 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Lin, L. H., Hall, J., Lippmann-Pipke, J., Ward, J. A., Lollar, B. S., DeFlaun, M., … Onstott, T. C. (2005). Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochemistry, Geophysics, Geosystems, 6(7). https://doi.org/10.1029/2004GC000907

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free