RAMBO-K: Rapid and sensitive removal of background sequences from next generation sequencing data

  • Tausch S
  • Renard B
  • Nitsche A
 et al. 
  • 24


    Mendeley users who have this article in their library.
  • 6


    Citations of this article.


BACKGROUND: The assembly of viral or endosymbiont genomes from Next Generation Sequencing (NGS) data is often hampered by the predominant abundance of reads originating from the host organism. These reads increase the memory and CPU time usage of the assembler and can lead to misassemblies.

RESULTS: We developed RAMBO-K (Read Assignment Method Based On K-mers), a tool which allows rapid and sensitive removal of unwanted host sequences from NGS datasets. Reaching a speed of 10 Megabases/s on 4 CPU cores and a standard hard drive, RAMBO-K is faster than any tool we tested, while showing a consistently high sensitivity and specificity across different datasets.

CONCLUSIONS: RAMBO-K rapidly and reliably separates reads from different species without data preprocessing. It is suitable as a straightforward standard solution for workflows dealing with mixed datasets. Binaries and source code (java and python) are available from http://sourceforge.net/projects/rambok/.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free