Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny

84Citations
Citations of this article
90Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Muntjac deer (Muntiacinae, Cervidae) are of great interest in evolutionary studies because of their dramatic chromosome variations and recent discoveries of several new species. In this paper, we analyze the evolution of karyotypes of muntjac deer in the context of a phylogeny which is based on 1,844-bp mitochondrial DNA sequences of seven generally recognized species in the muntjac subfamily. The phylogenetic results support the hypothesis that karyotypic evolution in muntjac deer has proceeded via reduction in diploid number. However, the reduction in number is not always linear, i.e., not strictly following the order: 46→14/13→8/9→6/7. For example, Muntiacus muntjak (2n = 6/7) shares a common ancestor with Muntiacus feae (2n = 13/14), which indicates that its karyotype was derived in parallel with M. feae's from an ancestral karyotype of 2n ≥ 13/14. The newly discovered giant muntjac (Muntiacus vuquangensis) may represent another parallel reduction lineage from the ancestral 2n = 46 karyotype. Our phylogenetic results indicate that the giant muntjac is relatively closer to Muntiacus reevesi than to other muntjacs and may be placed in the genus Muntiacus. Analyses of sequence divergence reveal that the rate of change in chromosome number in muntjac deer is one of the fastest in vertebrates. Within the muntjac subfamily, the fastest evolutionary rate is found in the Fea's lineage, in which two species with different karyotypes diverged in around 0.5 Myr.

Cite

CITATION STYLE

APA

Wang, W., & Lan, H. (2000). Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny. Molecular Biology and Evolution, 17(9), 1326–1333. https://doi.org/10.1093/oxfordjournals.molbev.a026416

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free