Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

  • Hayes D
  • Turner D
  • Stinson G
 et al. 
  • 128

    Readers

    Mendeley users who have this article in their library.
  • 61

    Citations

    Citations of this article.

Abstract

We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000-2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 similar to +/-similar to 252 similar to TgC similar to yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 similar to TgC similar to yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 similar to TgC similar to yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 similar to TgC similar to yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 similar to TgC similar to yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 similar to TgC similar to yr-1 and -931 similar to TgC similar to yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 similar to TgC similar to yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

Author-supplied keywords

  • Agriculture
  • CO2emissions
  • CO2sinks
  • Carbon cycle
  • Climate change
  • Forests
  • Inventory
  • Modeling
  • North America

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free