Refinement of protein structures in explicit solvent

555Citations
Citations of this article
189Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We present a CPU efficient protocol for refinement of protein structures in a thin layer of explicit solvent and energy parameters with completely revised dihedral angle terms. Our approach is suitable for protein structures determined by theoretical (e.g., homology modeling or threading) or experimental methods (e.g., NMR). In contrast to other recently proposed refinement protocols, we put a strong emphasis on consistency with widely accepted covalent parameters and computational efficiency. We illustrate the method for NMR structure calculations of three proteins: interleukin-4, ubiquitin, and crambin. We show a comparison of their structure ensembles before and after refinement in water with and without a force field energy term for the dihedral angles; crambin was also refined in DMSO. Our results demonstrate the significant improvement of structure quality by a short refinement in a thin layer of solvent. Further, they show that a dihedral angle energy term in the force field is beneficial for structure calculation and refinement. We discuss the optimal weight for the energy constant for the backbone angle omega and include an extensive discussion of meaning and relevance of the calculated validation criteria, in particular root mean square Z scores for covalent parameters such as bond lengths. © 2003 Wiley-Liss, Inc.

Cite

CITATION STYLE

APA

Linge, J. P., Williams, M. A., Spronk, C. A. E. M., Bonvin, A. M. J. J., & Nilges, M. (2003). Refinement of protein structures in explicit solvent. Proteins: Structure, Function and Genetics, 50(3), 496–506. https://doi.org/10.1002/prot.10299

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free