Regional evaporation estimates from flux tower and MODIS satellite data

628Citations
Citations of this article
796Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Two models were evaluated for their ability to estimate land surface evaporation at 16-day intervals using MODIS remote sensing data and surface meteorology as inputs. The first was the aerodynamic resistance-surface energy balance model, and the second was the Penman-Monteith (P-M) equation, where the required surface conductance is estimated from remotely-sensed leaf area index. The models were tested using 3 years of evaporation and meteorological measurements from two contrasting Australian ecosystems, a cool temperate, evergreen Eucalyptus forest and a wet/dry, tropical savanna. The aerodynamic resistance-surface energy balance approach failed because small errors in the radiative surface temperature translate into large errors in sensible heat, and hence into estimates of evaporation. The P-M model adequately estimated the magnitude and seasonal variation in evaporation in both ecosystems (RMSE = 27 W m- 2, R2 = 0.74), demonstrating the validity of the proposed surface conductance algorithm. This, and the ability to constrain evaporation estimates via the energy balance, demonstrates the superiority of the P-M equation over the surface temperature-based model. There was no degradation in the performance of the P-M model when gridded meteorological data at coarser spatial (0.05°) and temporal (daily) resolution were substituted for locally-measured inputs. The P-M approach was used to generate a monthly evaporation climatology for Australia from 2001 to 2004 to demonstrate the potential of this approach for monitoring land surface evaporation and constructing monthly water budgets from 1-km to continental spatial scales. © 2006 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Cleugh, H. A., Leuning, R., Mu, Q., & Running, S. W. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106(3), 285–304. https://doi.org/10.1016/j.rse.2006.07.007

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free