Journal article

Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model

Bangert M, Kottmeier C, Vogel B, Vogel H ...see all

Atmospheric Chemistry and Physics, vol. 11, issue 9 (2011) pp. 4411-4423

  • 48


    Mendeley users who have this article in their library.
  • 34


    Citations of this article.
Sign in to save reference


We have extended the coupled mesoscale atmosphere and chemistry model COSMO-ART to account for the transformation of aerosol particles into cloud condensation nuclei and to quantify their interaction with warm cloud microphysics on the regional scale. The new model system aims to fill the gap between cloud resolving models and global scale models. It represents the very complex microscale aerosol and cloud physics as detailed as possible, whereas the continental domain size and efficient codes will allow for both studying weather and regional climate. The model system is applied in a first extended case study for Europe for a cloudy five day period in August 2005. The model results show that the mean cloud droplet number concentration of clouds is correlated with the structure of the terrain, and we present a terrain slope parameter TS to classify this dependency. We propose to use this relationship to parameterise the PDF of subgrid-scale cloud updraft velocity in the activation parameterisations of climate models. The simulations show that the presence of CCN and clouds are closely related spatially. We find high aerosol and CCN number concentrations in the vicinity of clouds at high altitudes. The nucleation of secondary particles is enhanced above the clouds. This is caused by an efficient formation of gaseous aerosol precursors above the cloud due to more available radiation, transport of gases in clean air above the cloud, and humid conditions. Therefore the treatment of complex photochemistry is crucial in atmospheric models to simulate the distribution of CCN. The mean cloud droplet number concentration and droplet diameter showed a close link to the change in the aerosol. To quantify the net impact of an aerosol change on the precipitation we calculated the precipitation susceptibility β for the whole model domain over a period of two days with an hourly resolution. The distribution function of β is slightly skewed to positive values and has a mean of 0.23. Clouds with a liquid water path LWP of approximately 0.85 kg mg-2 are on average most susceptible to aerosol changes in our simulations with an absolute value of β of 1. The average β for LWP between 0.5 kg mg-2 and 1 kg mg-2 is approximately 0.4. © 2011 Author(s).

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • M. Bangert

  • C. Kottmeier

  • B. Vogel

  • H. Vogel

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free