From reinforcement learning models to psychiatric and neurological disorders

  • 2


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


Over the last decade and a half, reinforcement learning models have fostered an increasingly sophisticated understanding of the functions of dopamine and cortico-basal ganglia-thalamo-cortical (CBGTC) circuits. More recently, these models, and the insights that they afford, have started to be used to understand important aspects of several psychiatric and neurological disorders that involve disturbances of the dopaminergic system and CBGTC circuits. We review this approach and its existing and potential applications to Parkinson's disease, Tourette's syndrome, attention-deficit/hyperactivity disorder, addiction, schizophrenia and preclinical animal models used to screen new antipsychotic drugs. The approach's proven explanatory and predictive power bodes well for the continued growth of computational psychiatry and computational neurology.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

There are no authors.

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free