Relaxation in time-dependent current-density-functional theory

  • D'Agosta R
  • Vignale G
  • 24


    Mendeley users who have this article in their library.
  • 35


    Citations of this article.


We apply the time-dependent current-density-functional theory to the study of the relaxation of a closed many-electron system evolving from a nonequilibrium initial state. We show that the self-consistent unitary time evolution generated by the exchange-correlation vector potential irreversibly drives the system to equilibrium. We also show that the energy dissipated in the Kohn-Sham system, i.e., the noninteracting system whose particle and current densities coincide with those of the physical system under study, is related to the entropy production in the real system.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free