On the representation of de bruijn graphs

  • Chikhi R
  • Limasset A
  • Jackman S
 et al. 
  • 87

    Readers

    Mendeley users who have this article in their library.
  • 28

    Citations

    Citations of this article.

Abstract

The de Bruijn graph plays an important role in bioinformatics, especially in the context of de novo assembly. However, the representation of the de Bruijn graph in memory is a computational bottleneck for many assemblers. Recent papers proposed a navigational data structure approach in order to improve memory usage. We prove several theoretical space lower bounds to show the limitation of these types of approaches. We further design and implement a general data structure (DBGFM) and demonstrate its use on a human whole-genome dataset, achieving space usage of 1.5 GB and a 46% improvement over previous approaches. As part of DBGFM, we develop the notion of frequency-based minimizers and show how it can be used to enumerate all maximal simple paths of the de Bruijn graph using only 43 MB of memory. Finally, we demonstrate that our approach can be integrated into an existing assembler by modifying the ABySS software to use DBGFM.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free