How can the response to volume expansion in patients with spontaneous respiratory movements be predicted?

  • Heenen S
  • De Backer D
  • Vincent J
  • 97


    Mendeley users who have this article in their library.
  • 123


    Citations of this article.


INTRODUCTION: The aim of the study was to evaluate the ability of different static and dynamic measurements of preload to predict fluid responsiveness in patients with spontaneous respiratory movements. METHODS: The subjects were 21 critically ill patients with spontaneous breathing movements receiving mechanical ventilation with pressure support mode (n = 9) or breathing through a face mask (n = 12), and who required a fluid challenge. Complete hemodynamic measurements, including pulmonary artery occluded pressure (PAOP), right atrial pressure (RAP), pulse pressure variation (DeltaPP) and inspiratory variation in RAP were obtained before and after fluid challenge. Fluid challenge consisted of boluses of either crystalloid or colloid until cardiac output reached a plateau. Receiver operating characteristics (ROC) curve analysis was used to evaluate the predictive value of the indices to the response to fluids, as defined by an increase in cardiac index of 15% or more. RESULTS: Cardiac index increased from 3.0 (2.3 to 3.5) to 3.5 (3.0 to 3.9) l minute-1 m-2 (medians and 25th and 75th centiles), p < 0.05. At baseline, DeltaPP varied between 0% and 49%. There were no significant differences in DeltaPP, PAOP, RAP and inspiratory variation in RAP between fluid responders and non-responders. Fluid responsiveness was predicted better with static indices (ROC curve area +/- SD: 0.73 +/- 0.13 for PAOP, p < 0.05 vs DeltaPP and 0.69 +/- 0.12 for RAP, p = 0.054 compared with DeltaPP) than with dynamic indices of preload (0.40 +/- 0.13 for DeltaPP and 0.53 +/- 0.13 for inspiratory changes in RAP, p not significant compared with DeltaPP). CONCLUSION: In patients with spontaneous respiratory movements, DeltaPP and inspiratory changes in RAP failed to predict the response to volume expansion.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Sarah Heenen

  • Daniel De Backer

  • Jean Louis Vincent

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free