A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering

  • Billiet T
  • Vandenhaute M
  • Schelfhout J
 et al. 
  • 923

    Readers

    Mendeley users who have this article in their library.
  • 423

    Citations

    Citations of this article.

Abstract

The combined potential of hydrogels and rapid prototyping technologies has been an exciting route in developing tissue engineering scaffolds for the past decade. Hydrogels represent to be an interesting starting material for soft, and lately also for hard tissue regeneration. Their application enables the encapsulation of cells and therefore an increase of the seeding efficiency of the fabricated structures. Rapid prototyping techniques on the other hand, have become an elegant tool for the production of scaffolds with the purpose of cell seeding and/or cell encapsulation. By means of rapid prototyping, one can design a fully interconnected 3-dimensional structure with pre-determined dimensions and porosity. Despite this benefit, some of the rapid prototyping techniques are not or less suitable for the generation of hydrogel scaffolds. In this review, we therefore give an overview on the different rapid prototyping techniques suitable for the processing of hydrogel materials. A primary distinction will be made between (i) laser-based, (ii) nozzle-based, and (iii) printer-based systems. Special attention will be addressed to current trends and limitations regarding the respective techniques. Each of these techniques will be further discussed in terms of the different hydrogel materials used so far. One major drawback when working with hydrogels is the lack of mechanical strength. Therefore, maintaining and improving the mechanical integrity of the processed scaffolds has become a key issue regarding 3-dimensional hydrogel structures. This limitation can either be overcome during or after processing the scaffolds, depending on the applied technology and materials. © 2012 Elsevier Ltd.

Author-supplied keywords

  • Hydrogel
  • Photolithography
  • Rapid prototyping
  • Scaffold

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free