Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter

  • Li Q
  • Mark R
  • Clifford G
  • 69


    Mendeley users who have this article in their library.
  • 175


    Citations of this article.


Physiological signals such as the electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often severely corrupted by noise, artifact and missing data, which lead to large errors in the estimation of the heart rate (HR) and ABP. A robust HR estimation method is described that compensates for these problems. The method is based upon the concept of fusing multiple signal quality indices (SQIs) and HR estimates derived from multiple electrocardiogram (ECG) leads and an invasive ABP waveform recorded from ICU patients. Physiological SQIs were obtained by analyzing the statistical characteristics of each waveform and their relationships to each other. HR estimates from the ECG and ABP are tracked with separate Kalman filters, using a modified update sequence based upon the individual SQIs. Data fusion of each HR estimate was then performed by weighting each estimate by the Kalman filters' SQI-modified innovations. This method was evaluated on over 6000 h of simultaneously acquired ECG and ABP from a 437 patient subset of ICU data by adding real ECG and realistic artificial ABP noise. The method provides an accurate HR estimate even in the presence of high levels of persistent noise and artifact, and during episodes of extreme bradycardia and tachycardia.

Author-supplied keywords

  • Blood pressure
  • Data fusion
  • ECG
  • EKG
  • Heart rate
  • Kalman filter
  • Robust estimation
  • Signal quality
  • electrocardiogram

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free