The role of glycogen, glucose and lactate in neuronal activity during hypoxia in the hooded seal (Cystophora cristata) brain

25Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The brains of diving mammals are repeatedly exposed to hypoxic conditions during diving. Brain neurons of the hooded seal (Cystophora cristata) have been shown to be more hypoxia tolerant than those of mice, but the underlying mechanisms are not clear. Here we investigated the roles of different metabolic substrates for maintenance of neuronal activity and integrity, by comparing the in vitro spontaneous neuronal activity of brain slices from layer V of the visual cortex of hooded seals with those in mice (Mus musculus). Studies were conducted by manipulating the composition of the artificial cerebrospinal fluid (aCSF), containing either 10. mM glucose, or 20. mM lactate, or no external carbohydrate supply (aglycemia). Normoxic, hypoxic and ischemic conditions were applied. The lack of glucose or the application of lactate in the aCSF containing no glucose had little effect on the neuronal activity of seal neurons in either normoxia or hypoxia, while neurons from mice survived in hypoxia only few minutes regardless of the composition of the aCSF. We propose that seal neurons have higher intrinsic energy stores. Indeed, we found about three times higher glycogen stores in the seal brain (~4.1. ng per μg total protein in the seal cerebrum) than in the mouse brain. Notably, in aCSF containing no glucose, seal neurons can tolerate 20. mM lactate while in mouse neuronal activity vanished after few minutes even in normoxia. This can be considered as an adaptation to long dives, during which lactate accumulates in the blood. © 2014 IBRO.

Cite

CITATION STYLE

APA

Czech-Damal, N. U., Geiseler, S. J., Hoff, M. L. M., Schliep, R., Ramirez, J. M., Folkow, L. P., & Burmester, T. (2014). The role of glycogen, glucose and lactate in neuronal activity during hypoxia in the hooded seal (Cystophora cristata) brain. Neuroscience, 275, 374–383. https://doi.org/10.1016/j.neuroscience.2014.06.024

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free