Role of hydrogen in the surface passivation of crystalline silicon by sputtered aluminum oxide

  • Li T
  • Cuevas A
  • 27

    Readers

    Mendeley users who have this article in their library.
  • 15

    Citations

    Citations of this article.

Abstract

A power conversion efficiency record of 10.1% was achieved for kesterite absorbers, using a Cu2ZnSn(Se,S)4 thin-film solar cell made by hydrazine-based solution processing. Key device characteristics were compiled, including light/dark J–V, quantum efficiency, temperature dependence of Voc and series resistance, photoluminescence, and capacitance spectroscopy, providing important insight into how the devices compare with high-performance Cu(In,Ga)Se2. The record kesterite device was shown to be primarily limited by interface recombination, minority carrier lifetime, and series resistance. The new level of device performance points to the significant promise of the kesterites as an emerging and commercially interesting thin-film technology. Copyright © 2011 John Wiley & Sons, Ltd.

Author-supplied keywords

  • aluminum oxide
  • sputtering
  • surface passivation

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free