Skip to content
Journal article

The role of organic aerosols in homogeneous ice formation

Karcher B, Koop T ...see all

Atmospheric Chemistry and Physics, vol. 5 (2005) pp. 703-714

  • 5

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

Recent field observations suggest that the fraction of organic-containing aerosol particles in ice cloud particles is diminished when compared to the background aerosol prior to freezing. In this work, we use model calculations to investigate possible causes for the observed behavior. In particular, homogeneous freezing processes in cooling air parcels containing aqueous inorganic particles and organic particles are studied with a detailed microphysical model. A disparate water uptake and resulting size differences that occur between organic and inorganic particles prior to freezing are identified as the most likely reason for the poor partitioning of organic aerosols into the ice phase. The differences in water uptake can be caused by changes in the relationship between solute mass fraction and water activity of the supercooled liquid phase, by modifications of the accommodation coefficient for water molecules, or by a combination thereof. The behavior of peak ice saturation ratios and total ice crystal number concentrations is examined, and the dependence of the results on cooling rate is investigated. Finally, processes are discussed that could possibly modify the homogeneous freezing behavior of organic particles.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • B Karcher

  • T Koop

Cite this document

Choose a citation style from the tabs below