Skip to content

A safe operating space for humanity

Wang H, Chen X, Li W, Lai J ...see all

Guang pu xue yu guang pu fen xi = Guang pu, vol. 30, issue 12 (2010) pp. 3213-3216

  • 12


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.
  • N/A


    ScienceDirect users who have downloaded this article.
Sign in to save reference


A new method for the discrimination of varieties of corn was proposed based on the data set of near-infrared spectroscopy range from 4 000 to 12 000 cm(-1) of corn seed varieties. Principal component analysis (PCA) method was used to study the feature of the data, and the authors found that the near-infrared spectroscopy of corn seed varieties has a clear feature of zonal distribution, so the correlativity between the change in the distribution of the principal component and the discrimination result was studied, according to which the normalized principal component analysis (NPCA) method was proposed. Besides, principal direction biomimetic pattern recognition (PBPR) was proposed according to the feature, which got a better discrimination result. The average correct recognition rate attained 97.67% for test set I, and the average correct rejection rate attained 98.40%, with 13 of the 30 varieties reaching the correct recognition rate of 100%; The average correct rejection rate attained 98.90% for the test set II , and 11 of the 30 varieties reached the correct rejection rate of 100%. It was proved that the method had a high correct discrimination rate.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Hui-Rong Wang

  • Xin-Liang Chen

  • Wei-Jun Li

  • Jiang-Liang Lai

Cite this document

Choose a citation style from the tabs below