Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteries

76Citations
Citations of this article
102Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Aluminum–air batteries are promising candidates for next-generation high-energy-density storage, but the inherent limitations hinder their practical use. Here, we show that silver nanoparticle-mediated silver manganate nanoplates are a highly active and chemically stable catalyst for oxygen reduction in alkaline media. By means of atomic-resolved transmission electron microscopy, we find that the formation of stripe patterns on the surface of a silver manganate nanoplate originates from the zigzag atomic arrangement of silver and manganese, creating a high concentration of dislocations in the crystal lattice. This structure can provide high electrical conductivity with low electrode resistance and abundant active sites for ion adsorption. The catalyst exhibits outstanding performance in a flow-based aluminum–air battery, demonstrating high gravimetric and volumetric energy densities of ~2552 Wh kgAl−1 and ~6890 Wh lAl−1 at 100 mA cm−2, as well as high stability during a mechanical recharging process.

Cite

CITATION STYLE

APA

Ryu, J., Jang, H., Park, J., Yoo, Y., Park, M., & Cho, J. (2018). Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteries. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-06211-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free