Semantic Holism is seriously false

  • Massey G
  • 9


    Mendeley users who have this article in their library.
  • 2


    Citations of this article.


A bivalent valuation is snt iff sound (standard PC inference rules take truths only into truths) and non-trivial (not all wffs are assigned the same truth value). Such a valuation is normal iff classically correct for each connective. Carnap knew that there were non-normal snt valuations of PC, and that the gap they revealed between syntax and semantics could be jumped as follows. Let VALsnt be the set of snt valuations, and VALnrm be the set of normal ones. The bottom row in the table for the wedge is not semantically determined by VALsnt, but if one deletes from VALsnt all those valuations that are not classically correct at the aforementioned row, one jumps straights to VALnrm and thus to classical semantics. The conjecture we call semantic holism claims that the same thing happens for any semantic indeterminacy in any row in the table of any connective of PC, i.e., to remove it is to jump straight to classical semantics. We show (i) why semantic holism is plausible and (ii) why it is nevertheless false. And (iii) we pose a series of questions concerning the number of possible steps or jumps between the indeterminate semantics given by VALsnt and classical semantics given by VALnrm.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Gerald J. Massey

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free