Sensitivity and identifiability of stream flow generation parameters of the SWAT model

  • Cibin R
  • Sudheer K
  • Chaubey I
  • 93


    Mendeley users who have this article in their library.
  • 97


    Citations of this article.


Implementation of sensitivity analysis (SA) procedures is helpful in calibration of models and also for their transposition to different watersheds. The reported studies on SA of Soil and Water Assessment Tool (SWAT) model were mostly focused on identifying parameters for pruning or modifying during the calibration process. This paper presents a sensitivity and identifiability analysis of model parameters that influence stream flow generation in SWAT. The analysis was focused on evaluating the sensitivity of the parameters in different climatic settings, temporal scales and flow regimes. The global sensitivity analysis (GSA) technique based on classical decomposition of variance, Sobol’, was employed in this study. The results of the study indicate that modeled stream flow show varying sensitivity to parameters in different climatic settings. The results also suggest that the identifiability of a parameter for a given watershed is a major concern in calibrating the model for the specific watershed, as it might lead to equifinality of parameters. The SWAT model parameters show varying sensitivity in different years of simulation suggesting the requirement for dynamic updation of parameters during the simulation. The sensitivity of parameters during various flow regimes (low, medium and high flow) is also found to be uneven, which suggests the significance of a multi-criteria approach for the calibration of models.

Author-supplied keywords

  • Global sensitivity analysis
  • Identifiability analysis
  • SWAT
  • Sobol' Method

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free