Sensor data fusion for body state estimation in a hexapod robot with dynamical gaits

  • Lin P
  • Komsuglu H
  • Koditschek D
  • 58

    Readers

    Mendeley users who have this article in their library.
  • 5

    Citations

    Citations of this article.

Abstract

We report on a hybrid 12-dimensional full body state estimator for a hexapod robot executing a jogging gait in steady state on level terrain with regularly alternating ground contact and aerial phases of motion. We use a repeating sequence of continuous time dynamical models that are switched in and out of an extended Kalman filter to fuse measurements from a novel leg pose sensor and inertial sensors. Our inertial measurement unit supplements the traditionally paired three-axis rate gyro and three-axis accelerometer with a set of three additional three-axis accelerometer suites, thereby providing additional angular acceleration measurement, avoiding the need for localization of the accelerometer at the center of mass on the robot's body, and simplifying installation and calibration. We implement this estimation procedure offline, using data extracted from numerous repeated runs of the hexapod robot RHex (bearing the appropriate sensor suite) and evaluate its performance with reference to a visual ground-truth measurement system, comparing as well the relative performance of different fusion approaches implemented via different model sequences

Author-supplied keywords

  • Inertial measurement unit
  • Kalman Filter
  • Leg pose sensor
  • Legged robot
  • Sensor fusion

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Pei Chun Lin

  • Haldun Komsuglu

  • Daniel E. Koditschek

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free