Set size and the part-whole principle

  • Parker M
  • 3


    Mendeley users who have this article in their library.
  • 1


    Citations of this article.


Godel argued that Cantor’s notion of cardinal number was uniquely correct. More recent work has defended alternative “Euclidean” theories of set size, in which Cantor’s Principle (two sets have the same size if and only if there is a one-to-one correspondence between them) is abandoned in favor of the Part–Whole Principle (if A is a proper subset of B then A is smaller than B). Here we see from simple examples, not that Euclidean theories of set size are wrong, nor merely that they are counterintuitive, but that they must be either very weak or in large part arbitrary and misleading. This limits their epistemic usefulness.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Matthew W. Parker

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free