Sex comparison of hamstring structural and material properties

82Citations
Citations of this article
294Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Background: Musculotendinous stiffness provides an estimate of resistance to joint perturbation, thus contributing to joint stability. Females demonstrate lesser hamstring stiffness than males, potentially contributing to the sex discrepancy in anterior cruciate ligament injury risk. However, it is unclear if the sex difference in hamstring stiffness is due to differences in muscle size or to inherent/material properties of the musculotendinous unit. It was hypothesized that hamstring stiffness, stress, strain, and elastic modulus would be greater in males than in females, and that hamstring stiffness would be positively correlated with muscle size. Methods: Stiffness was assessed in 20 males and 20 females from the damping effect imposed by the hamstrings on oscillatory knee flexion/extension following joint perturbation. Hamstring length and change in length were estimated via motion capture, and hamstring cross-sectional area was estimated using ultrasound imaging. These characteristics were used to calculate hamstring material properties (i.e., stress, strain, and elastic modulus). Findings: Stiffness was significantly greater in males than in females (P < 0.001). However, stress, strain, and elastic modulus did not differ across sex (P > 0.05). Stiffness was significantly correlated with cross-sectional area (r = 0.395, P = 0.039) and the linear combination of cross-sectional area and resting length (R2 = 0.156, P = 0.043). Interpretation: Male's hamstrings possess a greater capacity for resisting changes in length imposed via joint perturbation from a structural perspective, but this property is similar across sex from a material perspective. Females demonstrate lesser hamstring stiffness compared to males in response to standardized loading conditions, indicating a compromised ability to resist changes in length associated with joint perturbation, and potentially contributing to the higher female ACL injury risk. However, the difference in hamstring stiffness is attributable in large part to differences in muscle size. © 2008 Elsevier Ltd. All rights reserved.

Cite

CITATION STYLE

APA

Blackburn, J. T., Bell, D. R., Norcross, M. F., Hudson, J. D., & Kimsey, M. H. (2009). Sex comparison of hamstring structural and material properties. Clinical Biomechanics, 24(1), 65–70. https://doi.org/10.1016/j.clinbiomech.2008.10.001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free