Shifts of functional gene representation in wheat rhizosphere microbial communities under elevated ozone

  • Li X
  • Deng Y
  • Li Q
 et al. 
  • 41

    Readers

    Mendeley users who have this article in their library.
  • 21

    Citations

    Citations of this article.

Abstract

Although the influence of ozone (O(3)) on plants has been well studied in agroecosystems, little is known about the effect of elevated O(3) (eO(3)) on soil microbial functional communities. Here, we used a comprehensive functional gene array (GeoChip 3.0) to investigate the functional composition, and structure of rhizosphere microbial communities of Yannong 19 (O(3)-sensitive) and Yangmai 16 (O(3)-relatively sensitive) wheat (Triticum aestivum L.) cultivars under eO(3). Compared with ambient O(3) (aO(3)), eO(3) led to an increase in soil pH and total carbon (C) percentages in grain and straw of wheat plants, and reduced grain weight and soil dissolved organic carbon (DOC). Based on GeoChip hybridization signal intensities, although the overall functional structure of rhizosphere microbial communities did not significantly change by eO(3) or cultivars, the results showed that the abundance of specific functional genes involved in C fixation and degradation, nitrogen (N) fixation, and sulfite reduction did significantly (P

Author-supplied keywords

  • elevated ozone
  • functional gene
  • rhizosphere microbial community
  • wheat cultivar

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free