Signal acquisition via polarization modulation in single photon sources

  • McDonnell M
  • Flitney A
  • 1


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


A simple model system is introduced for demonstrating how a single photon source might be used to transduce classical analog information. The theoretical scheme results in measurements of analog source samples that are (i) quantized in the sense of analog-to-digital conversion and (ii) corrupted by random noise that is solely due to the quantum uncertainty in detecting the polarization state of each photon. This noise is unavoidable if more than 1 bit per sample is to be transmitted and we show how it may be exploited in a manner inspired by suprathreshold stochastic resonance. The system is analyzed information theoretically, as it can be modeled as a noisy optical communication channel, although unlike classical Poisson channels, the detector's photon statistics are binomial. Previous results on binomial channels are adapted to demonstrate numerically that the classical information capacity, and thus the accuracy of the transduction, increases logarithmically with the square root of the number of photons, N. Although the capacity is shown to be reduced when an additional detector nonideality is present, the logarithmic increase with N remains.

Author-supplied keywords

  • *Algorithms
  • *Models, Statistical
  • *Signal Processing, Computer-Assisted
  • Computer Simulation
  • Photons
  • Refractometry/*methods

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • M D McDonnell

  • A P Flitney

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free