Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties

  • Bhalla U
  • 81


    Mendeley users who have this article in their library.
  • 68


    Citations of this article.


The synaptic signaling network is capable of sophisticated cellular computations. These include the ability to respond selectively to different patterns of input, and to sustain changes in response over long periods. The small volume of the synapse complicates the analysis of signaling because the chemical environment is strongly affected by diffusion and stochasticity. This study is based on an updated version of a previously proposed synaptic signaling circuit (Bhalla and lyengar, 1999) and analyzes three network computation properties in small volumes: bistability, thresholding, and pattern selectivity. Simulations show that although there are diffusive regimes in which bistability may persist, chemical noise at small volumes overwhelms bistability. In the deterministic situation, the network exhibits a sharp threshold for transition between lower and upper stable states. This transition is broadened and individual runs partition between lower and upper states, when stochasticity is considered. The third network property, pattern selectivity, is severely degraded at synaptic volumes. However, there are regimes in which a process similar to stochastic resonance operates and amplifies pattern selectivity. These results imply that simple scaling of signaling conditions to femtoliter volumes is unlikely, and microenvironments, such as reaction complex formation, may be essential for reliable small-volume signaling.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Upinder S. Bhalla

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free