Silicon-aware distributed switch architecture for on-chip networks

  • Roca A
  • Hernández C
  • Flich J
 et al. 
  • 14


    Mendeley users who have this article in their library.
  • 6


    Citations of this article.


It is well-known that current Chip MultiProcessor (CMP) and high-end MultiProcessor System-on-Chip (MPSoC) designs are growing in their number of components. Networks-on-Chip (NoC) provide the required connectivity for such CMP and MPSoC designs at reasonable costs. As technology advances, links become the critical component in the NoC due to their long delay and power consumption, becoming unacceptable for long global interconnects. In this paper we present a new switch architecture that reduces the negative impact of links on the NoC. We call our proposal distributed switch. The distributed switch spreads the circuitry of the switch onto the links. Thus, packets are buffered, routed, and forwarded at the same time they are crossing the link. Distributing a modular switch onto the link improves the trade off between the power consumption and the operating frequency of the entire network. On the contrary, area resources are increased. Additionally, the distributed switch presents better fault tolerance and process variation behavior with respect to a non-distributed switch. © 2013 Elsevier B.V. All rights reserved.

Author-supplied keywords

  • Link power consumption
  • Networ-on-chip
  • Switch design

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free