Skip to content
Journal article

Simulated radiative forcing from contrails and contrail cirrus

Chen C, Gettelman A...(+2 more)

Atmospheric Chemistry and Physics, vol. 13, issue 24 (2013) pp. 12525-12536

  • 14

    Readers

    Mendeley users who have this article in their library.
  • 8

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

A comprehensive general circulation model including ice supersaturation is used to estimate the climate impact of aviation induced contrails. The model uses a realistic aviation emissions inventory for 2006 to initiate contrails, and allows them to evolve consistently with the model hydrologic cycle. The radiative forcing from linear contrails is very sensitive to the diurnal cycle. For linear contrails, including the diurnal cycle of air traffic reduces the estimated radiative forcing by 29%, and for contrail cirrus estimates, the radiative forcing is reduced by 25%. Estimated global radiative forcing from linear contrails is 0.0031 ± 0.0005 Wm−2. The linear contrail radiative forcing is found to exhibit a strong diurnal cycle. The contrail cirrus radiative forcing is less sensitive to the diurnal cycle of flights. The estimated global radiative forcing from contrail cirrus is 0.013 ± 0.01 Wm−2. Over regions with the highest air traffic, the regional effect can be as large as 1 Wm−2.

Find this document

Get full text

Cite this document

Choose a citation style from the tabs below