Simulation of mineral dust aerosol with Piecewise Log-normal Approximation (PLA) in CanAM4-PAM

22Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

A new size-resolved dust scheme based on the numerical method of piecewise log-normal approximation (PLA) was developed and implemented in the fourth generation of the Canadian Atmospheric Global Climate Model with the PLA Aerosol Model (CanAM4-PAM). The total simulated annual global dust emission is 2500 Tg yr -1, and the dust mass load is 19.3 Tg for year 2000. Both are consistent with estimates from other models. Results from simulations are compared with multiple surface measurements near and away from dust source regions, validating the generation, transport and deposition of dust in the model. Most discrepancies between model results and surface measurements are due to unresolved aerosol processes. Biases in long-range transport are also contributing. Radiative properties of dust aerosol are derived from approximated parameters in two size modes using Mie theory. The simulated aerosol optical depth (AOD) is compared with satellite and surface remote sensing measurements and shows general agreement in terms of the dust distribution around sources. The model yields a dust AOD of 0.042 and dust aerosol direct radiative forcing (ADRF) of-1.24 W mg -2 respectively, which show good consistency with model estimates from other studies. © 2012 Author(s).

Cite

CITATION STYLE

APA

Peng, Y., Von Salzen, K., & Li, J. (2012). Simulation of mineral dust aerosol with Piecewise Log-normal Approximation (PLA) in CanAM4-PAM. Atmospheric Chemistry and Physics, 12(15), 6891–6914. https://doi.org/10.5194/acp-12-6891-2012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free