Journal article

Smoke injection heights from fires in North America: analysis of 5 years of satellite observations

Val Martin M, Logan J, Kahn D, Leung F, Nelson D, Diner D ...see all

Atmospheric Chemistry and Physics Discussions, vol. 9, issue 5 (2009) pp. 20515-20566

  • 71


    Mendeley users who have this article in their library.
  • 119


    Citations of this article.
Sign in to save reference


We analyze an extensive record of aerosol smoke plume heights derived from observations over North America for the fire seasons of 2002 and 2004–2007 made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on board the NASA Earth Observing System Terra satellite. We characterize the magnitude and variability of smoke plume heights for various biomes, and assess the contribution of local atmospheric and fire conditions to this variability. Plume heights are highly variable, ranging from a few hundred meters up to 5000m above the terrain at the Terra overpass time (11:00–14:00 local time). The largest plumes are found over the boreal region (median values of 850m height, 24 km length and 940m thickness), whereas the smallest plumes are found over cropland and grassland fires in the contiguous US (median values of 530m height, 12 km length and 550–640m thickness). The analysis of plume heights in combination with assimilated meteorological observations from the NASA Goddard Earth Observing System indicates that a significant fraction (4–12%) of plumes from fires are injected above the boundary layer (BL), consistent with earlier results for Alaska and the Yukon Territories during summer 2004. Most of the plumes located above the BL (>83%) are trapped within stable atmospheric layers. We find a correlation between plume height and the MODerate resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) thermal anomalies associated with each plume. Smoke plumes located in the free troposphere (FT) exhibit larger FRP values (1620–1640 MW) than those remaining within the BL (174–465 MW). Plumes located in the FT without a stable layer reach higher altitudes and are more spread-out vertically than those associated with distinct stable layers (2490m height and 2790m thickness versus 1880m height and 1800m thickness). The MISR plume climatology exhibits a well-defined seasonal cycle of plume heights in boreal and temperate biomes, with greater heights during June–July. MODIS FRP measurements indicate that larger summertime heights are the result of higher fire intensity, likely due to more severe fire weather during these months. This work demonstrates the significant effect of fire intensity and atmospheric structure on the ultimate rise of fire emissions, and underlines the importance of considering such physical processes in modeling smoke dispersion.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • M. Val Martin

  • J. A. Logan

  • D. Kahn

  • F. Y. Leung

  • D. Nelson

  • D. Diner

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free