Soil N 2 O and NO emissions from an arid, urban ecosystem

  • Hall S
  • Huber D
  • Grimm N
  • 2

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

We measured soil nitrogen (N) cycling and fluxes of N2O and NO in three land-use types across the metropolitan area of Phoenix, Arizona. Urbanization increased N2O emissions compared to native landscapes, primarily due to the expansion of fertilized and irrigated lawns. Fluxes of N2O from lawns ranged from 18 to 80 μg N 2 m-2 h-1 and were significantly larger than managed xeric landscapes (2.5-22 μg N m-2 h-1) and remnant desert sites within the urban core (3.7-14 μg N m-2 h-1). In contrast, average NO fluxes from 2 lawns were not significantV different from native desert when dry (6-80 μg N m-2 h-1 lawn; 5-16 μg N m-2 h-1 desert) and were lower than fluxes from deserts after wetting events. Furthermore, urbanization has significantly altered the temporal dynamics of NO emissions by replacing pulse-driven desert ecosystems with year-round irrigated, managed lawns. Short-term, pulse-driven emissions of NO from wetting of dry desert soils may reach 35% of anthropogenic emissions within a day after summer monsoon storms. If regional O3 production is NOx-limited during the monsoon season, fluxes from warm, recently wet arid soils may contribute to summer O3 episodes. Copyright 2008 by the American Geophysical Union.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Sharon J. Hall

  • David Huber

  • Nancy B. Grimm

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free