Solution-based synthesis of high yield CZTS (Cu2ZnSnS4) spherical quantum dots

  • Rajesh G
  • Muthukumarasamy N
  • Subramanian E
 et al. 
  • 28

    Readers

    Mendeley users who have this article in their library.
  • 11

    Citations

    Citations of this article.

Abstract

High yield CZTS quantum dots have been synthesized using simple precursors by chemical precipitation technique. Formation mechanism of CZTS spherical quantum dots also has been investigated. According to the mechanism, copper sulfide nuclei firstly forms, and serves as the starting point for the nucleation and growth of CZTS. X-ray diffraction pattern, X-ray photoelectron spectra (XPS) and Raman spectra reveals the formation of pure kesterite structure Cu2ZnSnS4nanoparticles. HRTEM analysis reveals the formation of CZTS quantum dots with an average particle size of ∼8.3 nm. The elemental distribution of CZTS quantum dots studied using STEM elemental mapping reveals that Cu, Zn, Sn and S are present in the sample. The photoluminescence spectra of CZTS exhibit a broad red emission band at 657 nm. The optical band gap is shifted to the higher energy side and it shows the presence of quantum confinement effect.

Author-supplied keywords

  • Chemical precipitation technique
  • High yield
  • Low temperature
  • Quantum dots

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free