Spectral changes of interhemispheric crosstalk during movement instabilities

  • Houweling S
  • Beek P
  • Daffertshofer A
  • 40

    Readers

    Mendeley users who have this article in their library.
  • 23

    Citations

    Citations of this article.

Abstract

Bimanual coordination requires the functional integration of the activity in various cortical, subcortical, spinal, and peripheral neural structures. We challenged this functional integration by destabilizing bimanual 5:8 tapping through an increase in movement tempo, while measuring brain and muscle activity using magnetoencephalography and electromyography. Movement instabilities were characterized by a drop in frequency locking. Time-frequency analysis revealed movement-related beta amplitude modulation in bilateral motor areas as well as movement-related corticospinal entrainment. Both of these synchronization patterns depended on movement tempo suggesting that the timescale needed for the upregulation and downregulation of beta synchrony in rhythmic tapping poses constraints on motor performance. Bilateral phase locking over movement cycles appeared to be mediated by beta-frequency oscillations and constrained by its phase dynamics. The timescale of beta synchrony thus seems to play a key role in achieving timed phase synchrony in the motor cortex and along the neural axis. Once event-related desynchronization-synchronization cycles cannot be build up properly, inhibition may become inadequate, resulting in a reduction of the stability of performance, which may eventually become unstable.

Author-supplied keywords

  • MEG
  • beta modulation
  • interhemispheric inhibition
  • motor cortex
  • motor timing

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free