A Spectral Graph Approach To Discovering Genetic Ancestry.

  • Lee A
  • Luca D
  • Roeder K
  • 9

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

Mapping human genetic variation is fundamentally interesting in fields such as anthropology and forensic inference. At the same time, patterns of genetic diversity confound efforts to determine the genetic basis of complex disease. Due to technological advances, it is now possible to measure hundreds of thousands of genetic variants per individual across the genome. Principal component analysis (PCA) is routinely used to summarize the genetic similarity between subjects. The eigenvectors are interpreted as dimensions of ancestry. We build on this idea using a spectral graph approach. In the process we draw on connections between multidimensional scaling and spectral kernel methods. Our approach, based on a spectral embedding derived from the normalized Laplacian of a graph, can produce more meaningful delineation of ancestry than by using PCA. The method is stable to outliers and can more easily incorporate different similarity measures of genetic data than PCA. We illustrate a new algorithm for genetic clustering and association analysis on a large, genetically heterogeneous sample.

Author-supplied keywords

  • and phrases
  • dimension reduction
  • human genetics
  • multidimensional scaling
  • population structure
  • spectral

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Ann B Lee

  • Diana Luca

  • Kathryn Roeder

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free