Spirometric correlates of improvement in exercise performance after anticholinergic therapy in chronic obstructive pulmonary disease

  • O'Donnell D
  • Lam M
  • Webb K
  • 61

    Readers

    Mendeley users who have this article in their library.
  • 355

    Citations

    Citations of this article.

Abstract

We wished to determine which resting spirometric parameters best reflect improvements in exercise tolerance and exertional dyspnea in response to acute high-dose anticholinergic therapy in advanced COPD. We studied 29 patients with stable COPD (FEV(1) = 40 +/- 2% predicted [%pred]; mean +/- SEM) and moderate to severe chronic dyspnea. In a double-blind placebo-controlled cross-over study, patients performed spirometry and symptom-limited constant-load cycle exercise before and 1 h after receiving 500 micrograms of nebulized ipratropium bromide (IB) or saline placebo. There were no significant changes in spirometry, exercise endurance, or exertional dyspnea after receiving placebo. In response to IB (n = 58): FEV(1), FVC, and inspiratory capacity (IC) increased by 7 +/- 1%pred, 10 +/- 1%pred, and 14 +/- 2%pred, respectively (p < 0.001), with no change in the FEV(1)/FVC ratio. After receiving IB, exercise endurance time (Tlim) increased by 32 +/- 9% (p < 0.001) and slopes of Borg dyspnea ratings over time decreased by 11 +/- 6% (p < 0.05). Percent change (%Delta) in Tlim correlated best with DeltaIC%pred (p = 0.020) and change in inspiratory reserve volume (DeltaTLC%pred) (p = 0.014), but not with DeltaFVC%pred, DeltaPEFR%pred, or DeltaFEV(1)%pred. Change in Borg dyspnea ratings at isotime near end exercise also correlated with DeltaIC%pred (p = 0.04), but not with any other resting parameter. Changes in spirometric measurements are generally poor predictors of clinical improvement in response to bronchodilators in COPD. Of the available parameters, increased IC, which is an index of reduced resting lung hyperinflation, best reflected the improvements in exercise endurance and dyspnea after IB. IC should be used in conjunction with FEV(1) when evaluating therapeutic responses in COPD.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Denis E. O'Donnell

  • Miu Lam

  • Katherine A. Webb

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free