Stability analysis of networked control systems

  • Walsh G
  • Ye H
  • Bushnell L
  • 10

    Readers

    Mendeley users who have this article in their library.
  • 1.1k

    Citations

    Citations of this article.

Abstract

We introduce a novel control network protocol, try-once-discard (TOD), for multiple-input-multiple-output (MIMO) networked control systems (NCSs), and provide an analytic proof of global exponential stability for both the new protocol and the more commonly used (statically scheduled) access methods. Our approach is to first design the controller using established techniques and considering the network transparency, and then analyze the effect of the network on closed-loop system performance. When implemented, an NCS consists of multiple independent sensors and actuators competing for an access to the network, with no universal clock available to synchronize their actions. Since the nodes act asynchronously, we allow access to the network at anytime, but assume each access occurs before a prescribed deadline, known as the maximum allowable transfer interval. Only one node may access the network at a time. This communication constraint imposed by the network is the main focus of the paper. The performance of the new TOD protocol and the statically scheduled protocols are examined in simulations of an automotive gas turbine and an unstable batch reactor

Author-supplied keywords

  • Limited communications
  • Networked control systems (NCSs)
  • Stability

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Gregory C. Walsh

  • Hong Ye

  • Linda G. Bushnell

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free