A stochastic broadcast feedback approach to regulating cell population morphology for microfluidic angiogenesis platforms

  • Wood L
  • Das A
  • Kamm R
 et al. 
  • 27


    Mendeley users who have this article in their library.
  • 14


    Citations of this article.


This paper presents a framework for controlling the development of a vascular system in an in vitro angiogenesis process. Based on online measurement of cell growth and a stochastic cell population model, a closed-loop control system is developed for regulating the process of cell migration and vascular system development. Angiogenesis is considered in a microfluidic environment, where chemical and mechanical stimuli can be applied to the cell population. A systems-level description of the angiogenesis process is formulated, and a control scheme that chooses an optimal sequence of control inputs to drive collective cell patterns toward a desired goal is presented in this paper. In response to control inputs, the k-step ahead prediction of morphologic pattern measures is evaluated, and the input that minimizes expected squared error between the future measure and its desired value is selected for the current control. Initial simulation experiments demonstrate that vascular development can be guided toward a desired morphologic pattern using this technique.

Author-supplied keywords

  • Angiogenesis
  • Biological cells
  • Biological control systems
  • Biological systems
  • Microfluidic devices
  • Population control
  • Stochastic processes
  • Vascular development

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free