Skip to content
Journal article

The structural biology of the developing dental enamel matrix

Fincham A, Moradian-Oldak J, Simmer J...(+3 more)

J Struct Biol, vol. 126, issue 3 (1999) pp. 270-299

  • 6

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

The biomineralization of the dental enamel matrix with a carbonated hydroxyapatite mineral generates one of the most remarkable examples of a vertebrate mineralized tissue. Recent advances in the molecular biology of ameloblast gene products have now revealed the primary structures of the principal proteins involved in this extracellular mineralizing system, amelogenins, tuftelins, ameloblastins, enamelins, and proteinases, but details of their secondary, tertiary, and quaternary structures, their interactions with other matrix and or cell surface proteins, and their functional role in dental enamel matrix mineralization are still largely unknown. This paper reviews our current knowledge of these molecules, the probable molecular structure of the enamel matrix, and the functional role of these extracellular matrix proteins. Recent studies on the major structural role played by the amelogenin proteins are discussed, and some new data on synthetic amelogenin matrices are reviewed.

Author-supplied keywords

  • Amelogenesis
  • Amelogenin
  • Amino Acid Sequence
  • Animals
  • Dental Enamel Proteins/chemistry/genetics/metaboli
  • Dental Enamel/*chemistry/growth & development/*ult
  • Extracellular Matrix/chemistry/metabolism/ultrastr
  • Humans
  • Microscopy, Atomic Force
  • Microscopy, Electron, Scanning
  • Minerals/chemistry/metabolism
  • Molecular Sequence Data
  • Surface Properties

Cite this document

Choose a citation style from the tabs below