Structural characteristics and barrier properties of the choroid plexuses in developing brain of the opossum (Monodelphis domestica)

  • Ek C
  • Habgood M
  • Dziegielewska K
 et al. 
  • 22

    Readers

    Mendeley users who have this article in their library.
  • 54

    Citations

    Citations of this article.

Abstract

The structural and functional development of the choroid plexuses, the site of the blood-cerebrospinal fluid (CSF) barrier, in an opossum (Monodelphis domestica) was studied. Marsupial species are extremely immature at birth compared with more conventional eutherian species. Choroid plexus tissue of each brain ventricle, from early stages of development, was collected for light and electron microscopy. During development, the choroidal epithelium changes from a pseudostratified to a cuboidal layer. Individual epithelial cells appear to go through a similar maturation process even though the timing is different between and within each plexus. The ultrastructural changes during development in the choroidal epithelial cells consist of an increase in the number of mitochondria and microvilli, and changes in structure of endoplasmic reticulum. There are also changes in the core of plexuses with age. In contrast, the structure of the tight junctions between epithelial cells does not appear to change with maturation. In addition, the route of penetration for lipid insoluble molecules from blood to CSF across the choroid plexuses was examined using a small biotin-dextran. This showed that the tight junctions already form a functional barrier in early development by preventing the paracellular movement of the tracer. Intracellular staining shows that there may be a transcellular route for these molecules through the epithelial cells from blood to CSF. Apart from lacking a glycogen-rich stage, cellular changes in the developing opossum plexus seem to be similar to those in other species, demonstrating that this is a good model for studies of mammalian choroid plexus development.

Author-supplied keywords

  • Blood-brain barrier
  • Cerebral ventricles
  • Cerebrospinal fluid
  • Electron microscopy
  • Ependyma
  • Tight junctions

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free