Structural determinants of ion flow through recombinant glutamate receptor channels

719Citations
Citations of this article
159Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Functional glutamate receptors (GluRs) were transiently expressed in cultured mammalian cells from cloned complementary DNAs encoding GluR-A, -B, -C, or -D polypeptides. The steady-state current-voltage (I-V) relations of glutamate- and kainate-induced currents through homomeric channels fell into two classes: channels composed of either the GluR-A, -C, and -D subunits showed doubly recting I-V curves, and channels composed of the GluR-B subunits displayed simple outward rectification. The presence of GluR-B subunits in heteromeric GluRs determined the I-V behavior of the resulting channels. Site-directed mutagenesis identified a single amino acid difference (glutamine to arginine) in the putative transmembrane segment TM2 responsible for subunit-specific I-V relationships. The properties of heteromeric wild-type and mutant GluRs revealed that the dominance of GluR-B is due to the arginine residue in the TM2 region.

Cite

CITATION STYLE

APA

Verdoorn, T. A., Burnashev, N., Monyer, H., Seeburg, P. H., & Sakmann, B. (1991). Structural determinants of ion flow through recombinant glutamate receptor channels. Science, 252(5013), 1715–1718. https://doi.org/10.1126/science.1710829

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free