On the structural and surface properties of transition metal nanoparticles in ionic liquids

  • Dupont J
  • Scholten J
  • 1


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


Ionic liquids (ILs), in particular imidazolium-based ILs, have proven to be suitable media for the generation and stabilisation of soluble metal nanoparticles (NPs). Indeed, transition-metal NPs with small sizes, narrow size distribution and different shapes have been prepared by reduction of organometallic compounds with molecular hydrogen, decomposition of transition-metal complexes in the zero-valent state, metal bombardment or simple transfer for previously prepared water- or classical organic solvent-soluble colloids to the ILs. The formation and stabilisation of NPs in these highly hydrogen bonded organised supramolecular fluids occur with the re-organisation of the hydrogen bond network and the generation of nanostructures with polar and non-polar regions, including the NPs. The IL forms a protective layer, which is probably composed of imidazolium aggregates located immediately adjacent to the nanoparticle surface, which provides both steric and electronic protection against aggregation and/or agglomeration. These stable transition-metal NPs immobilised in the ILs have proven to be efficient green catalysts for several reactions in multiphase conditions and also novel materials for chemical sensors. In this critical review, the structural/surface properties of these soluble metal NPs dispersed in ILs and their application in catalysis and as chemical sensors are discussed, with particular attention paid to the stabilisation models proposed to explain the stability and properties of these metal NPs (219 references).

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Jairton Dupont

  • Jackson D Scholten

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free